Charting change

[vc_row][vc_column width=”1/1″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”20″][mk_dropcaps style=”simple-style”]F[/mk_dropcaps]rom futuristic fusion power in British Columbia to mitigating carbon emissions in Alberta’s oilsands and harnessing the world’s highest tides in the Bay of Fundy, Canada has no shortage of innovative energy projects on the go. From coast to coast to coast Canadians are working to improve existing technologies and find efficient ways of tapping new sources of energy — some with the potential to change the world. This graphic features brief descriptions of a handful of these exciting Canadian projects.[/vc_column_text][mk_image src=”https://energy-exchange.net/wp-content/uploads/2015/01/Map-online-version.png” image_width=”1647″ image_height=”3136″ crop=”false” lightbox=”false” frame_style=”simple” target=”_self” caption_location=”inside-image” align=”left” margin_bottom=”20″][/vc_column][/vc_row][vc_row][vc_column width=”1/1″][mk_custom_box border_color=”#1c603a” border_width=”1″ bg_color=”#f2f0ea” bg_position=”left top” bg_repeat=”repeat” bg_stretch=”false” padding_vertical=”5″ padding_horizental=”20″ margin_bottom=”20″ min_height=”100″][vc_row_inner][vc_column_inner width=”1/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”10″]

Carbon Engineering

[/vc_column_text][mk_image src=”https://energy-exchange.net/wp-content/uploads/2015/01/Carbon-Engineering_Renderi-copy.jpg” image_width=”800″ image_height=”350″ crop=”false” lightbox=”false” frame_style=”simple” target=”_self” caption_location=”inside-image” align=”left” margin_bottom=”10″][/vc_column_inner][vc_column_inner width=”2/3″][mk_padding_divider size=”10″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”0″]Carbon capture takes the carbon emitted from a large industrial source, such as a coal-fired power plant, and pumps it underground before it enters the atmosphere. Sixty per cent of carbon emissions, however, do not originate from large industrial sources that can use this method. Carbon Engineering’s plant captures 80 per cent of carbon directly from the air, including carbon emitted from cars, planes, trucks and other non-commercial sources, and converts it into carbonate salt. In the future, this end product could be used to create fuels, such as gas or jet fuel, which would effectively be carbon-neutral, as the carbon emitted in their combustion would essentially be reabsorbed in the production of fresh fuel.[/vc_column_text][/vc_column_inner][/vc_row_inner][/mk_custom_box][/vc_column][/vc_row][vc_row][vc_column width=”1/1″][mk_custom_box border_color=”#1c603a” border_width=”1″ bg_color=”#f2f0ea” bg_position=”left top” bg_repeat=”repeat” bg_stretch=”false” padding_vertical=”20″ padding_horizental=”20″ margin_bottom=”20″ min_height=”100″][vc_row_inner][vc_column_inner width=”1/4″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”10″]

FORCE

[/vc_column_text][mk_image src=”https://energy-exchange.net/wp-content/uploads/2015/01/FORCE_MORE-ONLINE-copy.jpg” image_width=”800″ image_height=”350″ crop=”false” lightbox=”false” frame_style=”simple” target=”_self” caption_location=”inside-image” align=”left” margin_bottom=”10″][/vc_column_inner][vc_column_inner width=”3/4″][mk_padding_divider size=”10″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”0″]Tidal power has a long history in Nova Scotia. In 1607 there was a mill powered partially by tidal energy. In 1984, North America’s first and only tidal generating station began operation in Annapolis Royal. Today, new technology is being tested near Parrsboro that will harness the power of the world’s highest tides with turbines that work like underwater windmills and have a much smaller environmental impact than conventional sources of tidal power. By 2020, FORCE hopes to have the capacity for 20 megawatts, while the province has a goal of 300 MW of power from in-stream tidal energy projects beyond 2020.[/vc_column_text][/vc_column_inner][/vc_row_inner][/mk_custom_box][/vc_column][/vc_row][vc_row][vc_column width=”1/1″][mk_custom_box border_color=”#1c603a” border_width=”1″ bg_color=”#f2f0ea” bg_position=”left top” bg_repeat=”repeat” bg_stretch=”false” padding_vertical=”5″ padding_horizental=”20″ margin_bottom=”20″ min_height=”100″][vc_row_inner][vc_column_inner width=”1/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”10″]

GE’s small-scale LNG plants

[/vc_column_text][mk_image src=”https://energy-exchange.net/wp-content/uploads/2015/01/Small-LNG-Salof-copy.jpg” image_width=”800″ image_height=”350″ crop=”false” lightbox=”false” frame_style=”simple” target=”_self” caption_location=”inside-image” align=”left” margin_bottom=”10″][/vc_column_inner][vc_column_inner width=”2/3″][mk_padding_divider size=”20″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”0″]Liquefied natural gas can be used as a substitute for diesel or gasoline in transportation, and as a way to power industry and residential areas in remote locations. It’s cleaner than gas and diesel, easy to store and available on demand. GE has designed small-scale LNG integrated plants that take natural gas from nearby pipelines and liquefy it for easier storage and transportation to more remote locations.[/vc_column_text][/vc_column_inner][/vc_row_inner][/mk_custom_box][/vc_column][/vc_row][vc_row][vc_column width=”1/1″][mk_custom_box border_color=”#1c603a” border_width=”1″ bg_color=”#f2f0ea” bg_position=”left top” bg_repeat=”repeat” bg_stretch=”false” padding_vertical=”5″ padding_horizental=”20″ margin_bottom=”20″ min_height=”100″][vc_row_inner][vc_column_inner width=”1/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”10″]

General Fusion

[/vc_column_text][mk_image src=”https://energy-exchange.net/wp-content/uploads/2015/01/GF-sphere_Genergal-Fusion-copy.jpg” image_width=”800″ image_height=”350″ crop=”false” lightbox=”false” frame_style=”simple” target=”_self” caption_location=”inside-image” align=”left” margin_bottom=”10″][/vc_column_inner][vc_column_inner width=”2/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”0″]Our sun works like a massive fusion reactor, combining lighter elements, such as hydrogen, into heavier elements, such as helium. The process releases huge amounts of energy. For decades, scientists and engineers have tried to replicate this process on Earth as a source of sustainable energy, but it has required as much energy to maintain fusion as it produces. General Fusion aims to create an economically viable fusion power generator, using a reactor that requires just a fraction of the energy it produces. The company is currently working on full-scale prototypes.[/vc_column_text][/vc_column_inner][/vc_row_inner][/mk_custom_box][/vc_column][/vc_row][vc_row][vc_column width=”1/1″][mk_custom_box border_color=”#1c603a” border_width=”1″ bg_color=”#f2f0ea” bg_position=”left top” bg_repeat=”repeat” bg_stretch=”false” padding_vertical=”20″ padding_horizental=”20″ margin_bottom=”20″ min_height=”100″][vc_row_inner][vc_column_inner width=”1/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”10″]

Hydro-Québec

[/vc_column_text][mk_image src=”https://energy-exchange.net/wp-content/uploads/2015/01/2012-097-044-copy.jpg” image_width=”800″ image_height=”350″ crop=”false” lightbox=”false” frame_style=”simple” target=”_self” caption_location=”inside-image” align=”left” margin_bottom=”10″][/vc_column_inner][vc_column_inner width=”2/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”0″]The fourth largest supplier of hydroelectricity in the world is also the only North American electric utility to have created its own research centre. The Institut de recherche d’Hydro-Québec has two state-of-the-art facilities focused on how to extend the life and performance of its facilities, such as fault-locating technology that monitors the grid and directs maintenance crews to the location of any potential issues.[/vc_column_text][/vc_column_inner][/vc_row_inner][/mk_custom_box][mk_custom_box border_color=”#1c603a” border_width=”1″ bg_color=”#f2f0ea” bg_position=”left top” bg_repeat=”repeat” bg_stretch=”false” padding_vertical=”20″ padding_horizental=”5″ margin_bottom=”20″ min_height=”100″][vc_row_inner][vc_column_inner width=”1/6″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”10″]

Hydrostor

[/vc_column_text][mk_image src=”https://energy-exchange.net/wp-content/uploads/2015/01/Hydrostor.jpg” image_width=”800″ image_height=”350″ crop=”false” lightbox=”false” frame_style=”simple” target=”_self” caption_location=”inside-image” align=”left” margin_bottom=”10″][/vc_column_inner][vc_column_inner width=”5/6″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”0″]Power produced by renewable energy sources during offpeak hours often goes to waste. Enter Hydrostor. Using a special compressor, excess electricity is taken from the grid and turned into compressed air, which is pumped underwater into large balloon-like devices called flexible accumulators where the energy is stored. At peak demand, the flow is reversed and the weight of the surrounding water pressing on the accumulators forces the air back to the surface, where it’s then converted back into electricity.[/vc_column_text][/vc_column_inner][/vc_row_inner][/mk_custom_box][/vc_column][/vc_row][vc_row][vc_column width=”1/1″][mk_custom_box border_color=”#1c603a” border_width=”1″ bg_color=”#f2f0ea” bg_position=”left top” bg_repeat=”repeat” bg_stretch=”false” padding_vertical=”20″ padding_horizental=”20″ margin_bottom=”20″ min_height=”100″][vc_row_inner][vc_column_inner width=”1/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”10″]

Kearl

[/vc_column_text][mk_image src=”https://energy-exchange.net/wp-content/uploads/2015/01/Kearl-Sunrise-copy.jpg” image_width=”800″ image_height=”350″ crop=”false” lightbox=”false” frame_style=”simple” target=”_self” caption_location=”inside-image” align=”left” margin_bottom=”10″][/vc_column_inner][vc_column_inner width=”2/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”0″]Imperial considers its Kearl project the next generation of oilsands mining development, with technologies that significantly enhance its environmental performance. Energy needs have been reduced by using an innovative froth treatment process that eliminates the need to build an upgrader. The installation of energy-saving cogeneration will also help reduce the energy draw from the Alberta electricity grid and lower greenhouse gas emissions. These high-impact technologies will enable Kearl to produce emissions comparable to the average barrel of crude refined in the U.S.[/vc_column_text][/vc_column_inner][/vc_row_inner][/mk_custom_box][mk_custom_box border_color=”#1c603a” border_width=”1″ bg_color=”#f2f0ea” bg_position=”left top” bg_repeat=”repeat” bg_stretch=”false” padding_vertical=”20″ padding_horizental=”20″ margin_bottom=”20″ min_height=”100″][vc_row_inner][vc_column_inner width=”1/6″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”10″]

mPower

[/vc_column_text][mk_image src=”https://energy-exchange.net/wp-content/uploads/2015/01/mPower2.jpg” image_width=”800″ image_height=”350″ crop=”false” lightbox=”false” frame_style=”simple” target=”_self” caption_location=”inside-image” align=”left” margin_bottom=”10″][/vc_column_inner][vc_column_inner width=”5/6″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”0″]The Babcock & Wilcox Company’s Cambridge, Ont., subsidiary played a crucial role in the prototype stage of their new scalable nuclear reactor. The small modular reactors use existing technology in innovative ways to increase safety and a scalable design ensures the reactors can easily meet consumer needs.[/vc_column_text][/vc_column_inner][/vc_row_inner][/mk_custom_box][/vc_column][/vc_row][vc_row][vc_column width=”1/1″][mk_custom_box border_color=”#1c603a” border_width=”1″ bg_color=”#f2f0ea” bg_position=”left top” bg_repeat=”repeat” bg_stretch=”false” padding_vertical=”20″ padding_horizental=”20″ margin_bottom=”20″ min_height=”100″][vc_row_inner][vc_column_inner width=”1/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”10″]

SaskPower

[/vc_column_text][mk_image src=”https://energy-exchange.net/wp-content/uploads/2015/01/15294053209_a2ae02d518_o-copy.jpg” image_width=”800″ image_height=”350″ crop=”false” lightbox=”false” frame_style=”simple” target=”_self” caption_location=”inside-image” align=”left” margin_bottom=”10″][/vc_column_inner][vc_column_inner width=”2/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”0″]SaskPower’s Boundary Dam Carbon Capture and Storage Project is the first commercial-scale CCS project in the world. Saskatchewan relies on its abundant and cheap coal resources for almost half of its energy needs, but burning coal accounts for 70 per cent of the province’s greenhouse gas emissions. With Boundary Dam’s CCS project, 90 per cent of the CO2 produced by burning coal is captured at the source and buried underground, permanently. One million tonnes of CO2 are captured every year with the process, the equivalent of taking 250,000 cars off the road.[/vc_column_text][/vc_column_inner][/vc_row_inner][/mk_custom_box][/vc_column][/vc_row][vc_row][vc_column width=”1/1″][mk_custom_box border_color=”#1c603a” border_width=”1″ bg_color=”#f2f0ea” bg_position=”left top” bg_repeat=”repeat” bg_stretch=”false” padding_vertical=”20″ padding_horizental=”20″ margin_bottom=”20″ min_height=”100″][vc_row_inner][vc_column_inner width=”1/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”10″]

SunMine

[/vc_column_text][mk_image src=”https://energy-exchange.net/wp-content/uploads/2015/01/2-SunMine-copy.jpg” image_width=”800″ image_height=”350″ crop=”false” lightbox=”false” frame_style=”simple” target=”_self” caption_location=”inside-image” align=”left” margin_bottom=”10″][/vc_column_inner][vc_column_inner width=”2/3″][vc_column_text disable_pattern=”true” align=”left” margin_bottom=”0″]With more than 4,000 solar-cell modules mounted on 96 trackers, which follow the sun to maximize efficiency, SunMine in Kimberley, B.C., will be the largest solar facility west of Ontario when construction is completed in early 2015. Supported by mining company Teck, SunMine is built upon Teck’s fully reclaimed former Sullivan mine. What’s more, it will also be the first utility-scale solar project owned and operated by a municipality in Canada, and one of the first to be connected to British Columbia’s power grid.[/vc_column_text][/vc_column_inner][/vc_row_inner][/mk_custom_box][/vc_column][/vc_row][vc_row][vc_column width=”1/1″][mk_padding_divider size=”40″][mk_button dimension=”three” size=”large” outline_skin=”dark” outline_active_color=”#fff” outline_hover_color=”#333333″ bg_color=”#13bdd2″ text_color=”light” icon=”moon-reading” url=”/resources/energy-exchange-magazine/issue-3/” target=”_self” align=”left” fullwidth=”true” margin_top=”0″ margin_bottom=”15″ animation=”fade-in”]Read more stories from the Winter 2015 issue of Energy Exchange magazine[/mk_button][/vc_column][/vc_row]